-
1 making redundant
Деловая лексика: сокращающий, сокращение штатов -
2 making redundant
-
3 modular data center
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > modular data center
-
4 unit
прибор
– activity unit
– actuating unit
– adjusted unit
– adjustment unit
– antigenic unit
– antitoxin unit
– arithmetic unit
– as a unit
– assembly unit
– associated unit
– base unit
– be a stand-alone unit
– bead-making unit
– binary unit
– blackout unit
– boiler unit
– box unit
– breaking unit
– buffer unit
– caloricity unit
– centimeter-gram-second unit
– change-gear unit
– charge unit
– charging unit
– cleaning unit
– clock unit
– cobalt unit
– cold-air unit
– combing unit
– combustion unit
– comparator unit
– complete unit
– complexity unit
– component unit
– computing unit
– control unit
– cord unit
– coupling unit
– crosstalk unit
– data unit
– data-processing unit
– data-transmitter unit
– defective unit
– delay unit
– derived unit
– digital unit
– dimensionless unit
– display unit
– driver unit
– drum-boiler unit
– electrical unit
– electromagnetic unit
– elementary unit
– estimation unit
– execution unit
– exhaust unit
– feed unit
– fodder unit
– fundamental unit
– furnace unit
– generating unit
– generator-transformer unit
– gyro unit
– harvesting unit
– haulage unit
– hauling unit
– hulling unit
– hydrogenation unit
– hysteresis unit
– imaginary unit
– inker unit
– inking unit
– input unit
– input-output unit
– insertion unit
– interlocking unit
– keying unit
– library unit
– lighting unit
– load-bearing unit
– lock unit
– logging unit
– mass unit
– memory unit
– message unit
– meter-kilogram-second unit
– middle unit
– milking unit
– modular unit
– monetary unit
– monitor unit
– multiple unit
– multiplication-division unit
– multiplier unit
– multiplier-divider unit
– non-redundant unit
– noncoherent unit
– nozzle-trim unit
– off-line unit
– off-system unit
– oil pressure unit
– on-line unit
– operated unit
– operational unit
– output unit
– pack unit
– per unit
– per unit length
– photometric unit
– physical unit
– plug-in unit
– power unit
– prediction unit
– premodularized unit
– primary unit
– processing unit
– production unit
– propulsion unit
– pump unit
– radio-frequency unit
– rail-conditioning unit
– reaction-propulsion unit
– read-out unit
– recording unit
– recource unit
– reduce unit
– reflow unit
– regulating unit
– relative unit
– relay unit
– reproduction unit
– sample unit
– selection unit
– self-contained unit
– self-destruct unit
– sensing unit
– set up unit
– sheet-separating unit
– shift unit
– shot-blast unit
– signalling unit
– single-order unit
– size of unit
– slave unit
– slitting unit
– sorting unit
– sound unit
– sowing unit
– spare unit
– sprayer unit
– spring unit
– stand-by unit
– standard unit
– standby unit
– starting unit
– strobe unit
– structural unit
– submultiple unit
– synchro unit
– tail unit
– take as a unit
– test unit
– throw-away unit
– tolerance unit
– tracking unit
– traction unit
– translator unit
– TV camera unit
– unit arrangement
– unit bicircle
– unit call
– unit charge
– unit circle
– unit cost
– unit cube
– unit digit
– unit element
– unit face
– unit fraction
– unit heater
– unit hydrograph
– unit impulse
– unit interval
– unit is rejected
– unit load
– unit of area
– unit of information
– unit of length
– unit of measurement
– unit of output
– unit of work
– unit pack
– unit point
– unit power
– unit pressure
– unit process
– unit strain
– unit stress
– unit time
– unit triangular
– unit vector
– unit vulcanizer
– voluentary unit
– volume unit
– washing unit
– X-ray unit
absolute electrostatic unit — единица электростатическая абсолютная
arriving unit is rejected — входящее требование получает отказ
automatic fuel-control unit — <engin.> агрегат командно-топливный
data storage unit — <comput.> блок хранения данных
engine is installed as a unit — двигатель устанавливается в сборе
flashing light unit — < railways> головка проблесковая
line-scan conversion unit — преобразователь строчного стандарта
load distribution unit — <engin.> блок распределения нагрузки
load following unit — <engin.> блок маневренный
natural unit of information — натуральная единица информации
nuclear propulsion unit — <cosm.> двигатель атомный
nuclear steam-raising unit — <constr.> установка паропроизводная ядерная
oscillator amplifier unit — < radio> блок генераторно-усилительный
power generating unit — <engin.> энергоблок
power supply unit — < radio> агрегат питания
separator pump unit — <energ.> станция компрессорная дожимная
servo control unit — <engin.> гидроусилитель
single-operator welding unit — однопостовая сварочная установка
thermal imaging unit — <math.> прибор тепловизионный, <tech.> тепловизор
threshold logic unit — <comput.> блок логический пороговый
two-operator welding unit — двухпостовая сварочная установка
unit power rating — <engin.> мощность удельная
-
5 head chef
Пищевая промышленность: шеф-повар (although "head chef" may seem redundant, the word "chef" has come to be applied to any cook, kitchen helper or fast food operator, making the distinction necessary.) -
6 circuit
1) схема; цепь; контур2) канал; линия; тракт3) тлф. шлейф5) круговое движение, движение по окружности || совершать круговое движение, двигаться по окружности•- 2D circuit
- 3D circuit
- absorbing circuit
- absorption circuit
- ac circuit
- acceptor circuit
- adaptive logic circuit
- additive printed circuit
- adjustable threshold logic circuit
- aerial circuit
- alive circuit
- aluminium-gate MOS integrated circuit
- aluminum-gate MOS integrated circuit
- AM detecting circuit
- analog circuit
- ancillary circuit
- AND circuit
- anode circuit
- antenna circuit
- anticlutter circuit
- anticoincidence circuit
- antihunt circuit
- antijamming circuit
- anti-Karp circuit
- antiresonance circuit
- antiresonant circuit
- antisidetone circuit
- aperiodic circuit
- application-specific integrated circuit
- approved circuit
- array integrated circuit
- astable circuit
- autodyne circuit
- automatic start circuit
- averaging circuit
- azimuth-sweep circuit
- back-plate circuit
- back-to-back circuit
- balanced circuit
- base-line marker circuit
- basic circuit
- beta circuit
- beta feedback circuit
- bias circuit
- bidirectional clamping circuit
- bilateral circuit
- bipolar circuit
- bipolar integrated circuit
- bistable circuit
- bistable multivibrator circuit
- black stretch circuit
- black-level restoring circuit
- black-level setting circuit
- blanking circuit
- bootstrap circuit
- bound circuit
- boxcar circuit
- branch circuit
- branched circuit
- bridge circuit
- bridged circuit
- broken circuit
- bubble annihilation circuit
- bubble circuit
- bubble detection circuit
- bubble propagation circuit
- bubble replication circuit
- bubble stretching circuit
- bubble switching circuit
- bubble-domain annihilation circuit
- bubble-domain detection circuit
- bubble-domain propagation circuit
- bubble-domain replication circuit
- bubble-domain stretching circuit
- bubble-domain switching circuit
- bucket-brigade circuit
- buffer circuit
- building-out circuit
- built-up circuit
- bulk-effect integrated circuit
- butterfly circuit
- butterfly tank circuit
- calibrating circuit
- call circuit
- capacitive differentiator circuit
- capacitive oscillatory circuit
- cathode circuit
- central-battery circuit
- ceramic printed circuit
- charge-coupled device integrated circuit
- chemically deposited printed circuit
- chemically reduced printed circuit
- chemically-assembled integrated circuit
- chevron bubble propagation circuit
- chevron bubble-domain propagation circuit
- chip integrated circuit
- cholesteric circuit
- chopping circuit
- chrominance matrix circuit
- chrominance separation circuit
- chrominance take-off circuit
- circuit of graph
- clamping circuit
- clamp-on circuit
- clipping circuit
- clock circuit
- clocked circuit
- close-coupled circuits
- closed circuit
- closed magnetic circuit
- CMOS integrated circuit
- coaxial circuit
- coincidence circuit
- collector circuit
- collector-diffusion isolated integrated circuit
- color processing circuit
- color purity circuit
- color-balance circuit
- color-indexing circuit
- color-killer circuit
- Colpitts oscillatory circuit
- combinational circuit
- combinatorial circuit
- combiner circuit
- common-base circuit
- common-battery circuit
- common-cathode circuit
- common-collector circuit
- common-drain circuit
- common-emitter circuit
- common-gate circuit
- common-grid circuit
- common-source circuit
- common-use circuit
- compander circuit
- comparator circuit
- comparison circuit
- compatible circuit
- compensating circuit
- complementary circuit
- complementary MOS integrated circuit
- complementary symmetry circuit
- complementary symmetry MOS integrated circuit
- complementary-output circuit
- composite circuit
- compound circuit
- compression circuit
- computer circuits
- conference circuit
- consumer integrated circuit
- contiguous-disk bubble propagation circuit
- contiguous-disk bubble-domain propagation circuit
- control circuit
- controller circuit
- convergence circuit
- cord circuit
- core-diode circuit
- core-transistor circuit
- correction input circuit
- COSMOS circuit
- countdown circuits
- counter circuit
- counter timer circuit
- counting circuit
- coupled circuits
- cross-control circuit
- crossed-waveguide circuit
- crosspoint integrated circuit
- cryotron circuit
- cue circuit
- current-access bubble circuit
- current-feedback circuit
- current-limited circuit
- current-source equivalent circuit
- custom circuit
- customer-specific integrated circuit
- custom-wired integrated circuit
- cutoff circuit
- damping circuit
- dash circuit
- data circuit
- dc circuit
- dc restoration circuit
- dead-on-arrival integrated circuit
- decision circuit
- decision making circuit
- decoupling circuit
- dedicated integrated circuit
- deep-submicron integrated circuit
- degenerative circuit
- delay circuit
- delay-insensitive circuit
- delay-sensitive circuit
- delta circuit
- demultiplexing circuit
- deposited integrated circuit
- derived circuit
- despiker circuit
- despiking circuit
- detector circuit
- detuned circuit
- dial toll circuit
- dial-up circuit
- diamond circuit
- die integrated circuit
- dielectric isolated integrated circuit
- differential-frequency circuit
- differentiating circuit
- diffused-isolation integrated circuit
- digital circuit
- digital integrated circuit
- digital logic circuit
- diode array integrated circuit
- diode integrated circuit
- diode-coupled circuit
- diplex circuit
- direct international circuit
- direct transit international circuit
- direct-coupled circuit
- direct-wire circuit
- discharge circuit
- discrete circuit
- discrete-component circuit
- disjunction circuit
- distributed-element circuit
- divided circuit
- dividing circuit
- Doppler tracking circuit
- dot circuit
- double-coincidence circuit
- double-ended cord circuit
- double-ridge easitron circuit
- double-ridge Karp circuit
- double-sided circuit
- double-tuned circuit
- down-scaled integrated circuit
- driven circuit
- dry circuit
- dry-processed integrated circuit
- DTF circuit
- dual-in-line integrated circuit
- duplex circuit
- duplicated circuit
- dynamic-convergence circuit
- dynamic-focus circuit
- dynamic-track following circuit
- earth circuit
- earthed circuit
- E-beam litho circuit
- EC circuit
- Eccles-Jordan circuit
- EITHER-OR circuit
- electric circuit
- electronic circuit
- elevated-electrode integrated circuit
- embossed-foil printed circuit
- emitter-coupled circuit
- emitter-follower logic integrated circuit
- engineering circuit
- epitaxial circuit
- epitaxial passivated integrated circuit
- equalization circuit
- equivalent circuit
- equivalent integrated circuit
- etched printed circuit
- evaporated circuit
- exclusive OR circuit
- expanded-sweep circuit
- expander circuit
- external circuit
- external magnetic circuit
- extra LSI circuit
- face-down integrated circuit
- fail-safe circuit
- fallback circuit
- fan-in circuit
- fan-out circuit
- fast time-constant circuit
- feed circuit
- feedback circuit
- ferrite-diode circuit
- ferrite-transistor circuit
- ferroresonant circuit
- field-access bubble circuit
- field-programmable integrated circuit
- filament circuit
- film integrated circuit
- fine-line integrated circuit
- fine-pattern integrated circuit
- flat-pack integrated circuit
- flexible printed circuit
- flip-chip integrated circuit
- flip-flop circuit
- flux transfer circuit
- flywheel circuit
- forced coupled circuits
- forked circuit
- four-wire circuit
- frame-grounding circuit
- frame-scanning circuit
- free coupled circuits
- freely oscillating coupled circuits
- free-running circuit
- frequency-changing circuit
- full-wave circuit
- fully integrated circuit
- function circuit
- g equivalent circuit
- ganged circuits
- gate circuit
- gate equivalent circuit
- Giacoletto circuit
- Goto-pair circuit
- grid circuit
- grounded circuit
- grounded-base circuit
- grounded-collector circuit
- grounded-emitter circuit
- grounded-grid circuit
- ground-return circuit
- grouping circuit
- guard-ring isolated monolithic integrated circuit
- Gunn-effect circuit
- h equivalent circuit
- half-phantom circuit
- half-wave circuit
- Hamilton circuit
- hardened circuit
- Hartley oscillatory circuit
- Hazeltine neutralizing circuit
- head circuit
- heater circuit
- high-temperature superconductor integrated circuit
- holding circuit
- horizontal scanning circuit
- horizontal sync circuit
- horizontal-deflection circuit
- hotline circuit
- hybrid circuit
- hybrid integrated circuit
- hybrid pi equivalent circuit
- hybrid thin-film circuit
- hybrid thin-film integrated circuit
- hybrid-type circuit
- I2L circuit
- ideal-transformer equivalent circuit
- identification circuit
- idler circuit
- ignition circuit
- image circuit
- impulsing circuit
- inclusive NOR circuit
- inclusive OR circuit
- incoming circuit
- individually wired circuit
- inductance-capacitance coupling circuit
- inductive circuit
- inductive differentiator circuit
- inductive oscillatory circuit
- inductively coupled circuit
- injection circuit
- injection integrated circuit
- input circuit
- inquiry circuit
- insulated-substrate integrated circuit
- integrate-and-dump circuit
- integrated circuit
- integrated injection logic circuit
- integrated optical circuit
- integrating circuit
- interaction circuit
- interface circuit
- inter-integrated circuit
- interlock circuit
- intermediate-frequency circuit
- inverter circuit
- ion-implanted bubble propagation circuit
- ion-implanted bubble-domain propagation circuit
- ion-implanted MOS integrated circuit
- iron circuit
- isolated integrated injection logic circuit
- isolated-substrate solid circuit
- isoplanar integrated circuit
- isoplanar-based integrated circuit
- joint circuit
- joint denial circuit
- Josephson logic integrated circuit
- Josephson-junction logic integrated circuit
- junction circuit
- junction-isolation integrated circuit
- Karp circuit
- keep-alive circuit
- keying circuit
- killer circuit
- label circuit
- ladder circuit
- lagging circuit
- large-scale hybrid integration circuit
- large-scale integration circuit
- laser-configured application-specific integrated circuit
- latched circuit
- latching Boolean circuit
- latching circuit
- leak circuit
- leakage circuit
- leased circuit
- line circuit
- linear circuit
- linear integrated circuit
- line-scan circuit
- line-scanning circuit
- live circuit
- load circuit
- local circuit
- local-battery circuit
- locking circuit
- Loftin-White circuit
- logic circuit
- long-distance telephone circuit
- longitudinal circuit
- losser circuit
- low-energy circuit
- low-temperature superconductor integrated circuit
- L-section circuit
- lumped circuit
- lumped-constant circuit
- made-to-order circuit
- magnetic circuit
- magnetic convergence circuit
- magnetic integrated circuit
- magnetic-core circuit
- majority circuit
- master-slice integrated circuit
- matching circuit
- matrix circuit
- matrix integrated circuit
- McCulloh circuit
- medium-scale integration circuit
- memory circuit
- merged transistor logic integrated circuit
- Mesny circuit
- message circuit
- metal-dielectric-semiconductor integrated circuit
- metallic circuit
- metal-oxide-semiconductor integrated circuit
- metal-oxide-semiconductor large scale integration circuit
- meter-current circuit
- meter-voltage circuit
- microcomputer integrated circuit
- microelectronic integrated circuit
- microenergy logic circuit
- micrologic circuit
- micropower circuit
- microprinted circuit
- microprocessor integrated circuit
- microprocessor logic-support circuit
- microprogrammed circuit
- microwatt circuit
- microwave circuit
- microwave integrated circuit
- mix circuit
- mixing circuit
- molecular integrated circuit
- monobrid integrated circuit
- monolithic integrated circuit
- monolithic microwave integrated circuit
- monophase integrated circuit
- monostable circuit
- MOS integrated circuit
- MOS-on-sapphire integrated circuit
- MTL integrated circuit
- mu circuit
- mu feedback circuit
- multibrid integrated circuit
- multichip integrated circuit
- multidrop circuit
- multifunctional integrated circuit
- multilayer circuit
- multilevel-metallized integrated circuit
- multiphase integrated circuit
- multiplanar circuit
- multiple circuit
- multiple-chip circuit
- multiple-substrate solid circuit
- multipoint circuit
- multistable circuit
- multistage circuit
- muting circuit
- NAND circuit
- nanotube integrated circuit
- n-channel logic MOS integrated circuit
- negative OR circuit
- NEITHER-NOR circuit
- neutral magnetic circuit
- neutralizing circuit
- noise equivalent circuit
- noise suppression circuit
- nondisjunction circuit
- noninductive circuit
- nonlinear circuit
- nonphantomed circuits
- nonredundant circuit
- NOR circuit
- NOT circuit
- NOT-AND circuit
- NOT-OR circuit
- off-the-shelf circuit
- one-chip integrated circuit
- one-sided circuit
- one-wire circuit
- open circuit
- open magnetic circuit
- open-wire circuit
- optical integrated circuit
- optically coupled circuit
- optoelectronic integrated circuit
- optron integrated circuit
- OR circuit
- OR-ELSE circuit
- oscillator circuit
- oscillatory circuit
- output circuit
- overcoupled circuits
- overlap telling circuit
- oxide-isolated integrated circuit
- packaged circuit
- painted printed circuit
- parallel circuit
- parallel LCR circuit
- parallel-resonant circuit
- parallel-series circuit
- passivated integrated circuit
- p-channel logic MOS integrated circuit
- peak-holding circuit
- peaking circuit
- peak-riding clipping circuit
- perforated bubble propagation circuit
- perforated bubble-domain propagation circuit
- periodic circuit
- peripheral integrated circuit
- permalloy circuit
- permanent virtual circuit
- phantom circuit
- phase-advance circuit
- phase-comparison circuit
- phase-compensating circuit
- phase-delay circuit
- phase-equalizing circuit
- phase-inverting circuit
- phase-lag circuit
- phase-shift circuit
- photonic integrated circuit
- physical circuits
- physical equivalent circuit
- pi circuit
- pickax bubble propagation circuit
- pickax bubble-domain propagation circuit
- piezoelectric-crystal equivalent circuit
- pilot circuit
- planar integrated circuit
- planex integrated circuit
- plastic integrated circuit
- plastic-encapsulated integrated circuit
- plate circuit
- plated circuit
- plated printed circuit
- p-n junction isolated integrated circuit
- point-to-point circuit
- polar circuit
- polarized magnetic circuit
- polling circuit
- polymer integrated circuit
- polymer logic circuit
- polymer-based logic circuit
- polyphase circuit
- positioning circuit
- potentiometer circuit
- potted circuit
- power adder circuit
- preemphasis circuit
- presetting circuit
- primary circuit
- primary series circuit
- printed circuit
- printed wiring circuit
- printed-component circuit
- program circuit
- programmed interconnection pattern large-scale integration circuit
- propagation circuit
- proprietary integrated circuit
- pulse-actuated circuit
- pulse-shaping circuit
- pulsing circuit
- pump circuit
- pumping circuit
- purity circuit
- push-pull circuit
- push-push circuit
- push-to-talk circuit
- push-to-type circuit
- quadruplex circuit
- quasi-bistable circuit
- quasi-monostable circuit
- quenching circuit
- quiet-tuning circuit
- r equivalent circuit
- radiating circuit
- radiation hardened integrated circuit
- radio circuit
- radio communication circuit
- radio-frequency integrated circuit
- radio-receiving circuit
- radio-transmitting circuit
- range-marker circuit
- range-sweep circuit
- range-tracking circuit
- rapid single flux quantum circuit
- RC circuit
- RCG circuit
- RCTL circuit
- RDTL circuit
- reactance control circuit
- reaction circuit
- reactive circuit
- read-and-write circuit
- redundant circuit
- reflex circuit
- regenerative circuit
- rejector circuit
- repeat circuit
- reset circuit
- reset control circuit
- reshaping circuit
- resistance-capacitance circuit
- resistance-inductance circuit
- resistance-inductance-capacitance circuit
- resistor-capacitor-transistor logic circuit
- resistor-coupled transistor logic circuit
- resistor-diode-transistor logic circuit
- resistor-transistor logic circuit
- resonant circuit
- retroactive circuit
- reverberation-controlled gain circuit
- right-plane circuit
- ring circuit
- ring-and-bar circuit
- ringdown circuit
- ringing circuit
- RL circuit
- RLC circuit
- RSFQ circuit
- RTL circuit
- sample-and-hold circuit
- sampling circuit
- scaled integrated circuit
- scale-of-eight circuit
- scale-of-ten circuit
- scale-of-two circuit
- scaling circuit
- scanning circuit
- scrambler circuit
- screened circuit
- sealed circuit
- sealed-junction integration circuit
- selective circuit
- self-holding circuit
- self-repairing circuit
- self-saturating circuit
- semiconductor integrated circuit
- semiconductor-magnetic circuit
- semicustom integrated circuit
- separation circuit
- series circuit
- series RLC circuit
- series-peaking circuit
- series-resonant circuit
- service circuit
- short circuit
- shunt circuit
- shunt-peaking circuit
- shunt-series circuit
- side circuits
- sidetone suppression circuit
- signal circuit
- signal-processing circuit
- silent circuit
- silicon integrated circuit
- silicon-on-sapphire integrated circuit
- simple parallel circuit
- simplex circuit
- single-chip integrated circuit
- single-ended circuit
- single-mask level bubble circuit
- single-phase circuit
- single-ridge easitron circuit
- single-ridge Karp circuit
- single-shot trigger circuit
- single-trip trigger circuit
- single-tuned circuit
- single-wire circuit
- slave circuit
- sliding short circuit
- slow-wave circuit
- small outline integrated circuit
- small-scale integrated circuit
- smoothing circuit
- sneak circuit
- software circuit
- solid-state circuit
- spare circuit
- spark circuit
- speaker circuit
- sprayed printed circuit
- square-rooting circuit
- squaring circuit
- squelch circuit
- stacked circuit
- staggered circuits
- stamped printed circuit
- standard scale circuit
- star-connected circuit
- starting circuit
- start-stop circuit
- static-induction transistor integrated circuit
- stenode circuit
- stick circuit
- stopper circuit
- storage circuit
- straightforward circuit
- stripline circuit
- submicron integrated circuit
- subscriber line interface circuit
- subscriber-line audio-processing circuit
- superconducting tank circuit
- superimposed circuit
- superposed circuit
- supervising circuit
- support circuit
- sweep circuit
- switch virtual circuit
- switched circuit
- switching circuit
- sync separator circuit
- sync stretch circuit
- synchronous circuit
- T2L circuit
- talk-back circuit
- tank circuit
- tantalum thin-film circuit
- tap circuit
- tapped circuit
- tapped resonant circuit
- tapped-capacitor circuit
- tapped-capacitor resonant circuit
- tapped-coil circuit
- tapped-coil resonant circuit
- tapped-inductor circuit
- tapped-inductor resonant circuit
- T-bar bubble propagation circuit
- T-bar bubble-domain propagation circuit
- T-circuit
- telegraph circuit
- telephone circuit
- telling circuit
- terminating circuit
- Thevenin equivalent circuit
- thick-film circuit
- thin-film circuit
- three-dimensional circuit
- three-phase circuit
- threshold circuit
- through circuit
- tie-line circuit
- time-base circuit
- time-delay circuit
- toll-circuit
- totem-pole circuit
- transfer circuit
- transformer-coupled circuit
- transistor equivalent circuit
- transistor-transistor logic circuit
- traveling-wave-tube interaction circuit
- tributary circuit
- trigger circuit
- trunk circuit
- trunk terminating circuit
- trunk-junction circuit
- tse circuit
- TTL circuit
- tube circuit
- tube equivalent circuit
- tuned circuit
- tuning circuit
- twin-circuit
- twin-T circuit
- two-dimensional circuit
- two-state circuit
- two-way circuit
- two-wire circuit
- UHS integrated circuit
- ultra-audion circuit
- ultra-high-speed integrated circuit
- unbalanced circuit
- undefined function circuit
- underdamped circuit
- unilateral circuit
- unipolar integrated circuit
- universal cord circuit
- vacuum integrated circuit
- vacuum-deposited integrated circuit
- vapor-deposited printed circuit
- vertical deflection circuit
- vertical scanning circuit
- vertical sync circuit
- very high-speed integrated circuit
- very large-scale integration circuit
- V-groove isolated integrated injection logic circuit
- vibrating circuit
- video circuit
- virtual circuit
- voltage-feedback circuit
- voltage-source equivalent circuit
- wafer-on-scale integrated circuit
- warning circuit
- watch integrated circuit
- waveguide circuit
- waveguide short circuit
- weakly superconducting circuit
- weighting circuit
- welded electronic circuit
- white circuit
- wire circuit
- wired circuit
- wire-wrapped circuit
- writing circuit
- X-bar bubble propagation circuit
- X-bar bubble-domain propagation circuit
- XNOR circuit
- XOR circuit
- X-ray litho integrated circuit
- y equivalent circuit
- Y-bar bubble propagation circuit
- Y-bar bubble-domain propagation circuit
- Y-connected circuit
- z equivalent circuit
- zig-zag asymmetrical permalloy-wedges circuit
- zigzag permalloy track circuitThe New English-Russian Dictionary of Radio-electronics > circuit
-
7 system
1) система; комплекс2) совокупность•- absolutely consistent system - absolutely direct indecomposable system - absolutely free system - absolutely irreducible system - absolutely isolated system - allowable coordinate system - almost linear system - ample linear system - artificial feel system - automatic block system - automatic deicing system - binary relational system - binary-coded decimal system - block tooling system - Cartesian coordinate system - completely controllable system - completely ergodic system - completely hyperbolic system - completely identifiable system - completely integrable system - completely irreducible system - completely regular system - completely stable system - completely stratified system - complex number system - conical coordinate system - derivational formal system - differential equation system - differential selsyn system - digital counting system - digital transmission system - elliptic coordinate system - elliptic cylindrical coordinate system - externally inconsistent system - finite state system - finitely axiomatizable system - finitely presented system - fully characteristic quotient system - fundamental system of solutions - hydraulic lift system - integrated switching system - isomorphically embedded system - kernel normal system - linearly dependent system - linearly independent system - live hydraulic system - locking protection system - meteor-burst communication system - modular programming system - parabolic cylindrical coordinate system - permanent four-wheel drive system - pure independent system - radio telephone system - reactor protection system - real number system - receiver-amplifier crioelectric system - remote-cylinder hydraulic system - semantically consistent system - simply consistent system - simply incomplete system - simply ordered system - spherical coordinate system - strongly multiplicative system - structurally stable system - sufficiently general coordinate system - system of frequency curves - system of rational numbers - time multiplex system - time-division multiplex system - uniformly complete system - univalent system of notation - universal system of notation - weakly closed system - weighted number system
См. также в других словарях:
Redundant (song) — Single infobox Name = Redundant Artist = Green Day from Album = Nimrod Released = May 26th 1998 Format = CD Recorded = 1997 Genre = Pop punk Length = 3:17 Label = Reprise Producer = Rob Cavallo, Green Day Last single = Good Riddance (Time of Your … Wikipedia
Backup — For other uses of Backup , see Backup (disambiguation). In information technology, a backup or the process of backing up is making copies of data which may be used to restore the original after a data loss event. The verb form is back up in two… … Wikipedia
Code for Sustainable Homes — The Code for Sustainable Homes is an environmental impact rating system for housing in England and Wales, setting new standards for energy efficiency (above those in current building regulations)[1] and sustainability which are not mandatory… … Wikipedia
Completely Fair Scheduler — The Completely Fair Scheduler is the name of a task scheduler which was merged into the 2.6.23 release of the Linux kernel. It handles CPU resource allocation for executing processes, and aims to maximize overall CPU utilization while also… … Wikipedia
unfair dismissal — /ʌnˌfɛə dɪsˈmɪsəl/ (say un.fair dis misuhl) noun the dismissal of an employee, as by sacking, making redundant, or forcing them to resign, in violation of their contract or agreement, and in a manner which is harsh and unreasonable. Compare… …
Wikipedia:Featured article candidates — Here, we determine which articles are to be featured articles (FAs). FAs exemplify Wikipedia s very best work and satisfy the FA criteria. All editors are welcome to review nominations; please see the review FAQ. Before nominating an article,… … Wikipedia
List of WordGirl characters — The following is a list of characters in the PBS Kids series WordGirl.[1][2] Contents 1 Main characters 1.1 WordGirl/Becky Botsford 1.2 … Wikipedia
Pleonasm — is the use of more words (or even word parts) than necessary to express an idea clearly. A closely related concept is rhetorical tautology, in which essentially the same thing is said more than once in different words (e.g black darkness , cold… … Wikipedia
The Office (UK TV series) — The Office Genre Sitcom Mockumentary Created by Ricky Gervais Stephen Merchant Writt … Wikipedia
telecommunication — [tel΄ə kə myo͞o΄ni kā′shən] n. [also pl., with sing. or pl. v.] communication by electronic or electric means, as through radio, telephone, telegraph, television, or computers * * * tel·e·com·mu·ni·ca·tion (tĕlʹĭ kə myo͞o nĭ kāʹshən) n. 1. The… … Universalium
List of commonly misused English words — This is a list of English words which are commonly misused. It is meant to include only words whose misuse is deprecated by most usage writers, editors, and other professional linguists of Standard English. It is possible that some of the… … Wikipedia